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Abstract 

Background The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individu‑
als and between health and disease states. However, study‑to‑study heterogeneity in reported case–control results 
has made the identification of consistent and generalizable URT‑disease associations difficult.

Results In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets 
from case–control URT studies, with approximately 2–3 studies per respiratory condition and ten distinct condi‑
tions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across stud‑
ies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations 
from health and disease states.

Conclusions We found several robust genus‑level associations, across multiple independent studies, 
with either health or disease status. We identified disease associations specific to a particular respiratory condition 
and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, 
health, and disease, which hold across multiple studies and can help guide follow‑up work on potential URT microbi‑
ome diagnostics and therapeutics.
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Background
The human respiratory system is a complex structure, 
divided into the upper respiratory tract (URT) and the 
lower respiratory tract (LRT), and is primarily responsi-
ble for the exchange of oxygen and carbon dioxide with 
the atmosphere [1]. The upper respiratory tract, with an 
approximate surface area of 70  m2, is known to harbor a 
diverse microbial community [2]. Beginning at birth, col-
onization by microbes occurs through constant exposure 
to the surrounding environment via aspiration, inhala-
tion, and direct contact [2–4]. A quasi-stable community 
develops over time, typically consisting of genera such as 
Corynebacterium and Dolosigranulum in young healthy 
children [5] and Corynebacterium and Staphylococcus in 
healthy adults [6]. The URT, consisting of the nares, nasal 
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passages, mouth, sinuses, pharynx, and larynx, is the sec-
tion of the respiratory tract most exposed to the envi-
ronment and harbors the highest bacterial density [2]. 
Upsetting the balance of the URT microbiome may lead 
to opportunistic pathogen invasion and serious respira-
tory tract-related disease and infection [7, 8]. Chronic 
respiratory diseases represent the largest disease burden 
worldwide, affecting over half a billion people in 2017 [9]. 
Pneumonia, an infection of the lungs, is a leading cause 
of mortality across the world, responsible for an esti-
mated 3.2 million deaths in 2015 [10]. The likelihood of 
being infected by the influenza virus, another common 
respiratory pathogen that has caused recurrent epidem-
ics over the past century, has been shown to be partially 
dependent on the composition of the URT microbiome 
[7, 11]. Additional respiratory conditions, such as RSV, 
rhinosinusitis, and recurrent respiratory allergies, have 
all been linked with the disruption of the URT microbi-
ome [12–14].

Maintaining a diverse commensal microbiome can be 
protective against the invasion of opportunistic patho-
gens [2, 15]. Commensal bacteria can help to saturate 
metabolic niche space, preventing invasion and engraft-
ment of potential pathogens [8]. Additionally, commen-
sals have been shown to directly suppress viral infections 
through the activation of host immune responses [16]. 
Early exposure to certain commensal microbes can even 
lead to long-term immunomodulation, preventing auto-
immune diseases and promoting tolerance to allergens 
[17, 18]. Overall, the symbiotic relationship between the 
URT microbiome and the host appears critical for the 
maintenance of human health [2, 19].

As with the gut microbiome, variability exists in the 
microbial composition of these URT communities across 
individuals. In addition to inter-individual heterogene-
ity and disease status, URT microbiome profiles may be 
shaped by other covariates known to impact community 
structure, such as age [1, 7], and possibly others such as 
technical variation (e.g., sequencing methodologies), 
demographics, geographic location, and sex, although 
these associations are not well defined. Certain keystone 
or core taxa are well known to have a generally positive 
association with health, including the genera Dolosi-
granulum and Corynebacterium [20–22]. The sinonasal 
area is predominantly colonized by Corynebacterium and 
Staphylococcus [23, 24], whereas the throat and tonsil 
areas are mostly colonized by Streptococcus, Fusobacte-
rium, and Prevotella [25, 26]. Certain species in the gen-
era Streptococcus, Haemophilus, and Pseudomonas have 
been linked to negative health outcomes and disease [1, 
20, 27–29]. However, respiratory illnesses are often pol-
ymicrobial, caused or facilitated by the presence of mul-
tiple organisms [30]. Identifying consistent signatures of 

URT health and disease has been hampered by the vari-
ability in reported results from individual case–control 
studies.

Here, we conducted a meta-analysis of the composition 
of the URT microbiome across health and disease states 
to identify consistent patterns that persist across inde-
pendent studies in demographically and geographically 
divergent cohorts within and across multiple respira-
tory conditions. Using 16S rRNA amplicon sequencing 
data collected from the nasopharynx or the oropharynx 
across cases and controls from 26 independent studies 
representing 10 respiratory diseases and conditions, we 
observe robust associations between the relative abun-
dance of specific genera and disease status. The diseases, 
conditions, or set of conditions included in the meta-
analysis are as follows: asthma [31–33], chronic obstruc-
tive pulmonary disease (COPD) [34], COVID-19 [35–37], 
influenza [38–40], pneumonia [41–43], respiratory aller-
gies [44, 45], rhinosinusitis [46–48], respiratory syncytial 
virus (RSV, includes a range of conditions caused by the 
human respiratory syncytial virus) [49–51], respiratory 
tract infection (RTI, defined as a viral or bacterial infec-
tion of the upper or lower respiratory tract, including 
bronchitis) [52–54], and tonsillitis [55, 56]. Knowledge 
of these consistent within- or across-disease associations 
may help guide the development of diagnostic tools and 
therapeutic interventions aimed at prevention or treat-
ment of respiratory conditions.

Results
Assembling case–control studies for a URT meta‑analysis
To investigate the associations between the composition 
of the URT microbiome and disease susceptibility, we 
analyzed data collected from 26 independent case–con-
trol studies including 4706 total samples (study inclu-
sion criteria outlined in the “Methods” section). Studies 
included in this meta-analysis had, at a minimum, pub-
licly available 16S rRNA amplicon sequencing data and 
associated metadata on disease status, URT sampling site, 
sequencing method, and 16S rRNA hypervariable region 
used for amplicon sequencing. Unfortunately, additional 
metadata, such as age, gender, and other demographic 
data, were not uniformly available across all studies. Four 
studies included samples from both the nasopharynx and 
oropharynx; these samples were analyzed separately. For 
each study, raw data in FASTQ format were downloaded 
and processed through the same bioinformatic pipeline, 
defined in the “Methods” section below. All analyses were 
conducted at the genus level, given the phylogenetic res-
olution of partial 16S rRNA amplicon sequencing [57]. 
Details on each study included in this meta-analysis can 
be found in Additional file 1: Table 1.
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Alpha‑ and beta‑diversity analyses show community‑wide 
impacts of disease conditions
We compared URT microbiome alpha-diversity (Shan-
non index and Chao1 index) between disease cases 
and healthy controls at a per-study level. Prior to 
calculating diversity metrics, rarefaction to a sam-
pling depth of 2000 reads was conducted. After rar-
efaction, 4536 samples remained, representing a loss 
of 170 samples. Due to the large compositional differ-
ences observed between the nasopharynx and oro-
pharynx [40], diversity was investigated separately 
between these environments (Fig.  1A, B). Across 20 
studies sampling the nasopharynx, 7 showed signifi-
cant differences in alpha-diversity as measured by the 
Shannon Index between cases and controls, spanning 
asthma, influenza, RSV, RTI, and respiratory aller-
gies (two-tailed independent Student’s t-test, p < 0.05). 
All but one (Wen et  al., Influenza) of these significant 

relationships showed significantly higher alpha-diver-
sity in healthy vs unhealthy samples (Fig.  1A). Across 
10 studies sampling the oropharynx, four significant 
differences were observed between healthy and dis-
ease groups, for asthma, influenza, pneumonia, and 
RTI (two-tailed independent Student’s t-test, p < 0.05). 
Again, all but one (Wen et  al., Influenza) showed sig-
nificantly higher alpha-diversity in healthy vs unhealthy 
samples (Fig.  1B). Similar relationships were observed 
when examining taxonomic richness (Chao1 index). 
Among studies sampling the nasopharyngeal microbi-
ome, 10 of 20 showed significant differences between 
cases and controls, including six that were also sig-
nificantly enriched in the same direction in the Shan-
non index (Fig.  1C, two-tailed independent Student’s 
t-test, p < 0.05). For oropharyngeal samples, 8 of 10 
studies showed significant enrichment between cases 

Fig. 1 Alpha‑diversity between disease cases and healthy controls for each respiratory condition. Alpha‑diversity (Shannon Index or Chao1 index) 
is shown between cases and controls for each study. Shannon diversity for both samples from the nasopharynx (N = 3223) (A) and the oropharynx 
(N = 1313) (B) was calculated, as well as Chao1 richness for the nasopharynx (N = 3223) (C) and the oropharynx (N = 1313) (D). Significant differences 
between cases and controls were determined by independent Student’s t‑test, two‑tailed p‑value * = p < 0.05, ** = p < 0.01, *** = p < 0.001
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and controls (Fig.  1D, two-tailed independent Stu-
dent’s t-test, p < 0.05). It has not been well established 
whether or not alpha-diversity of the URT microbiome 
is associated with disease [58]. These results indicate 
that changes in alpha-diversity of the URT microbi-
ome during respiratory disease are disease-specific, not 
wholly consistent across studies, and lean toward an 
overall decline in diversity in the disease state.

We calculated Bray–Curtis distances at the genus 
level, to investigate beta-diversity patterns across stud-
ies (Fig. 2). For these analyses, all samples from all stud-
ies were pooled after rarefaction, including samples from 
both URT sampling sites. Analysis by PERMANOVA 
showed significant differences in beta-diversity between 
samples collected from two different URT sites, the naso-
pharynx and the oropharynx (Fig.  2A, PERMANOVA 
p < 0.05). This is consistent with findings that the naso-
pharyngeal and oropharyngeal microbiomes are com-
positionally distinct [59]. Additionally, a significant 

difference was observed between samples taken from 
different continents, which pushes against prior asser-
tions that the URT microbiome is generally consistent 
across geographic regions [60] (Fig.  2C, PERMANOVA 
p < 0.05). As expected, significant differences were 
observed in Bray–Curtis dissimilarity in cases relative to 
controls, as well as between disease conditions (Fig. 2B, 
D, PERMANOVA p < 0.05). Finally, significant differences 
in beta-diversity were observed between sequencing 
methods, and 16S rRNA hypervariable region used for 
amplicon sequencing (Fig. 2E, F, PERMANOVA p < 0.05). 
These results indicated that any further analysis would 
necessarily require consideration of these confounding 
variables.

Covariates are significantly associated with URT 
microbiome composition
Next, we aimed to examine the influence of geographic 
regions on taxonomic composition in healthy URT 

Fig. 2 Principal coordinate analysis (PCoA) plots of genus‑level Bray–Curtis distances along the first two principal coordinatess across all samples. 
Within subplots, each point represents a single sample (N = 4536). Beta‑diversity was significantly associated with disease status (A), URT sampling 
site (B), geographic region (C), disease type (D), sequencing method (E), and 16S rRNA hypervariable region used for amplicon sequencing (F). 
Significant differences in beta‑diversity were observed for all six parameters, as determined by PERMANOVA, p < 0.001 in all cases
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samples. Using metadata on geographic regions avail-
able for all studies, multiple regression was run for each 
genus to estimate the effect of geographic region (Europe, 
N. America, S. America, Africa, Asia, or Oceania) on 
centered log-ratio transformed relative abundance data, 
correcting for URT sampling site, sequencing method, 
and hypervariable region. Ninety-eight genera showed 
significant association with at least one geographic 
region (Fig.  3, multiple regression, FDR-corrected 
p-value < 0.05). FDR-corrected p-values and mean rela-
tive abundances of each taxon per geographic region can 
be found in the supplementary material (Additional file 1: 
Table 2).

To investigate how relative abundances of URT gen-
era vary with age in healthy populations, ANCOVA 
analyses controlling for URT sampling site, geographic 
region, sequencing method, and 16S rRNA hypervari-
able region and treating age as a continuous variable were 
conducted. Overall, 45 genera were significantly associ-
ated with age (ANCOVA, FDR-corrected p-value < 0.05), 
based on ANCOVA containing a squared term for age to 
uncover potential non-linear relationships. Samples were 
grouped into age quantiles, in order to visualize mean 
CLR-transformed relative abundance across age groups 
for genera that showed significant associations (Fig.  3). 
FDR-corrected p-values associated with age and age^2, 
as well as mean relative abundances of each taxon per 
age quantile can be found in the supplementary material 
(Additional file  1: Table  3). Using a multiple regression 
framework similar to the age analysis (i.e., with the same 
set of covariates), with sex as a categorical independent 
variable, no genera were found to be significantly associ-
ated with sex.

Within‑study Random Forest Classifiers show 
how predictive URT microbiome profiles are 
in distinguishing cases from controls across disease types
Random forest classifiers were constructed on a per-
study basis using genus-level URT relative abundance 
data, with fivefold cross-validation. The capacity of 
these classifiers to correctly discriminate cases from 
controls was assessed by calculating the area under the 

receiver-operating characteristic (AUROC, Fig.  4) from 
the results of cross-validation testing. Generally, moder-
ate classification accuracy was observed, with an aver-
age per-study AUROC of 0.71. Higher AUROC values 
were observed for some disease conditions, such as 
influenza and pneumonia. Others showed less capac-
ity to discriminate cases from controls, such as asthma 
and RTI. No strong correlation was observed between 
study sample count (N) and AUROC (Pearson correlation 
r =  − 0.059, p = 0.75), nor between the URT sampling site 
and AUROC (two-tailed Student’s independent t-test, 
t =  − 0.76, p = 0.45). These results indicate that URT com-
position contains information that can be leveraged to 
predict case versus control status, but that the predictive 
capacity can vary substantially across diseases.

URT microbiomes show distinct taxonomic associations 
across studies and disease states
We next investigated whether we could identify robust 
taxonomic patterns of URT microbiome disruption 
across disease conditions. We conducted logistic regres-
sion on a per-study basis, in order to avoid cross-study 
comparisons due to sparsity in available covariates, 
with disease status as the dependent variable, iterating 
through separate regressions for each genus (significant 
genera defined as those with FDR-corrected p < 0.05). 
Studies spanning 8 disease types showed significant 
enrichment in at least one taxon (Fig. 5). COPD, COVID-
19, and asthma were the three respiratory conditions that 
showed no significant taxonomic enrichments in health 
or disease (all FDR-corrected p > 0.05). Several consistent 
enrichments, where a taxon showed significant enrich-
ment in the same direction in at least two studies within a 
disease, were observed (Fig. 5; designated by black boxes 
drawn around cells in the heatmap). For instance, Pseu-
domonas was consistently enriched in cases of influenza, 
while Veillonella was consistently enriched in cases of 
influenza, pneumonia, and RSV. Overall consistent cross-
disease associations with health or disease status were 
defined as those genera that showed significant enrich-
ments in the same direction in at least three more stud-
ies across all diseases than in the opposing direction 

(See figure on next page.)
Fig. 3 Significant differences in centered log‑ratio (CLR) relative abundance of prevalent taxa between geographic regions and ages across healthy 
control samples. Heatmaps show significant taxonomic associations with geographic location and age in healthy controls. In both, mean 
CLR‑transformed relative abundance is shown via color encoding, with red indicating higher CLR abundance and blue indicating lower CLR 
abundance. A Taxa displaying significant associations with geographic location in healthy controls are shown in each column (N = 2387). Each 
row represents one study, with the URT sampling site annotated (NP = nasopharynx, OP = oropharynx). Geographic region per study is shown 
via the color bar to the left of the heatmap. Significance was determined by multiple regression, correcting for URT sampling site, sequencing 
method, and 16S hypervariable region, with FDR‑corrected two‑tailed p‑value < 0.05. B Taxa significantly associated with age are shown, for samples 
with available metadata for age (N = 554). Significance was determined by ANCOVA, treating age as a continuous variable, correcting for geographic 
region, URT sampling site, sequencing method, and 16S hypervariable region, with FDR‑corrected two‑tailed p‑value < 0.05
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Fig. 3 (See legend on previous page.)
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(Nsame_direction − Nopposite_direction ≥ 3). Following this heu-
ristic, Corynebacterium, Veillonella, Fusobacterium, 
Rothia, and Gemella were all associated with health, 
although Corynebacterium, and Veillonella each showed 
enrichment in cases in one study. Pseudomonas and 
Acinetobacter were consistently associated with disease 
(Fig.  5). Influenza and pneumonia showed the largest 
number of significant enrichments among all the disease 
conditions analyzed. Streptococcus had the highest mean 
relative abundance of taxa with significant associations, 
at 17.2% ± 0.3%, followed by Corynebacterium, Staphylo-
coccus, Dolosigranulum, Haemophilis, and Prevotella, all 
with mean relative abundances over 5% (Fig.  5). Effect 
sizes and FDR-corrected p values were recorded for each 
genus-disease pair (Additional file 1: Table 4).

Discussion
The results of this meta-analysis were consistent with 
prior findings regarding the composition of the URT 
microbiome in health and disease [1] and revealed novel 
compositional patterns within and across diseases and 
between healthy individuals across age and geography. 
They also underscore the importance of recognizing dif-
ferent types of dysbioses in the URT microbiome that can 
potentially contribute to disease.

URT microbiome samples showed a trend toward lower 
alpha-diversity in disease cases, as opposed to healthy 
controls, in at least one study representing asthma, RTI, 

influenza, respiratory allergies, RSV, and pneumonia 
(Fig.  2A, B). Previous studies have reported similar sig-
natures in cases of bacterial or viral infection [61, 62]. 
Influenza was the sole respiratory condition in which 
one study showed significantly higher alpha-diversity in 
disease cases, aligning with previous findings that alpha-
diversity patterns vary depending on the disease context 
[43]. However, this finding will need further validation, 
as prior reports have found no association between URT 
alpha-diversity and susceptibility to influenza infection, 
and another study in this analysis showed an association 
in the opposite direction from what we report (likely due 
to methodological differences across analyses) [7, 63].

Bray–Curtis dissimilarity between URT communi-
ties was associated with multiple covariates: case–con-
trol status, sampling site (nasopharynx or oropharynx), 
disease type, geographic region, sequencing method, 
and 16S rRNA hypervariable region used for amplicon 
sequencing (Fig. 2). Concordantly, prior work has shown 
significant beta-diversity differences between health and 
disease states [61] and separation between nasopharyn-
geal and oropharyngeal samples, with the oropharynx 
harboring a more diverse microbial population than the 
nasopharynx [40] (Fig.  2). The significant beta-diversity 
differences reported here between samples from distinct 
geographic regions were novel. Prior work has asserted 
a lack of geographic signal in the URT microbiome [60]. 
However, it is intuitive that variation in the surrounding 

Fig. 4 Area under the receiver‑operating characteristic (AUROC) for classifying case versus control status from the URT microbiome profile 
across studies. AUROC values are shown for each study and sampling site (N = 30 data sets, 4706 samples), based on random‑forest classifiers 
constructed using fivefold cross‑validation for data from each study, separately. Values less than 0.5 are not shown. Sample count for each study 
is shown (range = 12–1021). Per‑study disease type is shown via color encoding. Shaded background indicates the URT sampling site of each study 
(nasopharynx = pink; oropharynx = blue)
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environment could give rise to variation in URT compo-
sition (Fig. 2). Technical differences in sequencing meth-
odology were significantly associated with beta-diversity, 
as one might expect (Fig. 2). These results underscore the 
need to account for relevant covariates when looking for 
associations between URT composition and diseases that 
are independent of these potentially confounding factors.

We next looked into how the covariates age, sex, and 
geographic location shaped the taxonomic composition 
of the URT microbiome in healthy individuals across 
studies, in order to identify and isolate these signals 
from health and disease associations, and further indi-
cate which covariates should be considered in future 
analyses (Fig.  4). Relative abundances of several taxa 
(N = 98) were observed to show significant associations 

with geography. Corynebacterium, a known health-asso-
ciated taxon, showed higher mean relative abundance 
in samples from North America (12.0%), South Amer-
ica (15.2%), and Oceania (12.9%) than in samples from 
Africa (5.0%), Asia (4.2%), or Europe (8.6%). Conversely, 
Streptococcus showed much higher mean relative abun-
dance in samples collected in Africa (35%) than in any 
other geographic region. Other taxa that show signifi-
cant association with geographic region include Gemella, 
Pseudomonas, Rothia, and Veillonella, all of which show 
significant associations with health or disease via case–
control analysis. Due to these significant differences in 
taxonomic composition, it is imperative to account for 
geographic location in the construction of diagnostic or 
therapeutic tools. Two keystone taxa, Dolosigranulum 

Fig. 5 Within‑study case vs. control logistic regression results at the genus‑level. A Per‑study taxonomic enrichment in cases is denoted in red, 
and enrichment in controls is denoted in blue (N = 30 data sets, 4706 samples). Blank/gray spaces indicate no significant association. Only 
taxa with at least one significant association are shown. Significant associations are defined as having FDR‑corrected two‑tailed p‑value < 0.05. 
Black boxes are shown around consistent enrichments within a disease, in which taxa are enriched in the same direction in at least two studies 
within a disease. Overall disease associations are shown in the last heatmap row, in which enrichment in the same direction in three or more studies 
than in the opposite direction (Nsame_direction − Nopposite_direction ≥ 3) are considered across‑disease significant. B Mean relative abundance across all 
samples of each taxon shown in A. C Prevalence across all samples for each taxon shown in A 
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and Moraxella, were enriched in children as compared 
to adults, which was previously reported (Fig.  4) [5]. 
Additionally, we saw an increase in the health-associated 
taxon Veillonella in adults, when compared to children 
(Fig. 4). Due to the breadth of associations observed with 
age, and the purported inhibition of pathogenic invasion 
by some of these age-associated genera [2], we suggest 
that age should be included as a covariate when analyz-
ing URT microbiome data, whenever possible. However, 
when age metadata are unavailable, we hope that the list 
of taxa provided here can be used to identify associations 
that may be driven by variation in age, rather than by dis-
ease. Sex showed no associations.

We ran case–control logistic regression analyses sepa-
rately within each study and URT sampling site, to avoid 
pooling data across samples with very different demo-
graphic, biological, and methodological characteristics, 
similar to the approach taken in a prior meta-analysis 
of human gut microbiomes [64]. Robust taxonomic 
enrichments associated with case–control status were 
observed within 11 out of the 26 studies included in the 
meta-analysis (Fig.  5), including two studies that con-
tained both nasopharyngeal and oropharyngeal samples. 
Studies from 7 of the 10 respiratory conditions included 
showed significant enrichment of at least one genus. 
Asthma, COPD, and COVID-19 were the three diseases 
that showed no significant URT genus-level associations, 
although previous URT studies have shown a microbial 
association with these diseases, such as with Rothia in 
COVID-19 patients [65–67].

Several consistent signatures were observed across 
studies within a disease. For instance, Veillonella was 
significantly enriched in controls for at least two inde-
pendent studies within both pneumonia and RSV, and 
across OP and NP samples in the same study for influ-
enza (Fig. 5). Two studies included in the meta-analysis, 
one in influenza and one in RSV, similarly report Veil-
lonella enrichment in cases as compared to controls [49, 
62]. Conversely, Pseudomonas was significantly enriched 
in cases across two independent studies for influenza. 
This association was also reported in two influenza stud-
ies included in the meta-analysis [39, 40]. Prevotella 
showed six significant enrichments across studies, but 
interestingly showed very inconsistent associations, with 
enrichment in controls in four studies and enrichment 
in cases in two. Here we see an example of putative dys-
biosis taking many forms, and the health or disease asso-
ciations of many taxa showing strong context-specificity. 
Across diseases, significant signatures were observed for 
several keystone taxa that were enriched in healthy indi-
viduals [2], like Corynebacterium, Veillonella, Fusobac-
terium, Rothia, and Gemella. Of these, Corynebacterium 
has been previously identified as a core taxon, putatively 

associated with health [1]. Additionally, these are largely 
abundant/prevalent taxa, with mean relative abundance 
above 5% for Corynebacterium, specifically (Fig.  5). 
Conversely, a few genera known to harbor opportunis-
tic pathogen species, including Pseudomonas and Aci-
netobacter, showed multiple associations with diseases. 
Acinetobacter baumannii and Pseudomonas aeruginosa 
are both  known to cause disease in humans [27–29, 
68]. Understanding which taxa are strongly related to 
health or disease, and in which contexts, will further aid 
the development of effective microbial diagnostics and 
therapeutics.

There were several limitations to our study that are 
important to highlight. First, there were differences in 
amplicon sequencing methodologies across the 26 stud-
ies included in this analysis, which introduced substan-
tial technical biases. For example, not all studies had 
paired-end reads available, so we elected to use only 
forward reads for all studies to mitigate potential bias. 
Using longer, merged reads for some studies and not oth-
ers would impact the efficiency of taxonomic annotation 
across studies (i.e., even for studies with the same variable 
region sequenced). Furthermore, there are often a large 
number of paired-end reads that fail to merge, which 
can lead to a substantial drop in sequencing depth in a 
given sample, which is another layer of bias. Additionally, 
samples across studies showed differences in sequencing 
depth. To account for this, we elected to rarefy the data 
to normalize sampling depth across samples. While other 
options exist, the current consensus in the field is that 
rarefaction is still optimal for comparing point estimates 
of alpha- and beta-diversity across samples [69].

First, while we controlled for these technical variables 
in  our statistical testing whenever possible, incomplete 
metadata on these differences across studies can skew 
the final results. Second, many studies were missing per-
tinent demographic metadata, such as sex or age, which 
limited our statistical power by preventing us from cor-
recting for these covariates in regressions that pooled 
data across all studies. It was not possible to determine 
whether geographic region-related trends were consist-
ent across age groups, due to age metadata not being 
available for a majority of samples. Third, some studies 
have nearly 100-fold more samples than others, which 
can skew regression results if samples were pooled across 
studies that differed substantially in cohort size. For 
these reasons, the case versus control genus enrichment 
analyses were conducted on a per-study basis, to avoid 
introducing these myriad biases into the regressions. Sig-
nificant case–control hits from within-study regressions 
that were consistent across studies provided strong sup-
port for disease-specific associations that are independ-
ent of the aforementioned limitations.



Page 10 of 14Quinn‑Bohmann et al. BMC Biology           (2024) 22:93 

Conclusions
Overall, these findings point to different flavors of dys-
biosis that distinguish different disease states in the URT. 
In some cases, the disease state is characterized by a loss 
of putatively beneficial commensals, such as Veillonella 
in influenza, pneumonia, and RSV, and in other cases, it 
is characterized by the gain of putatively pathogenic taxa 
such as Pseudomonas in influenza, which mirrors what 
has been found across diseases in the human gut micro-
biome [64]. Future work should leverage these results to 
help guide the development of diagnostics and therapeu-
tics for the URT.

Methods
Systematic review of relevant studies
A systematic review was conducted using two main 
search engines (PubMed and Embase) to retrieve all rel-
evant publications describing microbiome sequencing 
in the human upper respiratory tract. A PRISMA flow 
chart (Additional file 2: Fig. S1) shows how the publica-
tions were screened, identified as relevant, and finally 
selected based on inclusion and exclusion criteria. Briefly, 
a total of 153,586 reports were identified using relevant 
keywords such as “microbiome,” “16S rRNA,” “URT,” 
“oropharynx,” “nasopharynx,” and “larynx.” Of these, 
37,083 were classified as conference abstracts, con-
ference papers, short surveys, and book chapters and 
therefore were excluded from the analysis. Additional 
exclusion criteria included 16S rRNA studies from non-
human URT, which filtered out 115,883 manuscripts, 
leaving only 620 manuscripts. Of these 620 manuscripts, 
a very strict and manual pre-selection was conducted 
to eliminate those with irrelevant topics or disease con-
ditions, such as studies that involved interventions or 
those without healthy patient controls, as well as stud-
ies with unavailable sequencing data, incomplete meta-
data, or duplicate manuscripts that referred to the same 
clinical study. This pre-selection step reduced the num-
ber of manuscripts by approximately 90%, leaving only 
68 manuscripts. The final selection step was conducted 
manually to ensure the public availability of well-curated 
metadata and corresponding raw sequencing data files. 
This step also excluded studies from overrepresented 
disease conditions, so that no more than 3 studies were 
selected per disease condition. At the end, a total of 26 
peer-reviewed publications survived all inclusion and 
exclusion criteria, yielding a total of 10 URT-related con-
ditions (asthma, chronic obstructive pulmonary disease, 
COVID-19, influenza, pneumonia, respiratory allergies, 
rhinosinusitis, RSV, respiratory tract infection, tonsilli-
tis) with 1–3 studies per condition representing a total of 
4,706 samples.

16S rRNA amplicon sequencing URT cohorts
All phylogenetic and read count data used in this study 
consisted of 16S rRNA gene  amplicon sequencing data, 
with multiple hypervariable regions sequenced across 
studies, spanning the V1 to V7 regions. A full list of the 
26 data sets analyzed in this study, along with links to 
SRA accession numbers and accompanying metadata, 
can be found in Additional file  1: Table  1. The studies 
contained between 12 and 1021 subjects and varied in 
age from birth to 97 years old (in studies where age meta-
data was available), with more representation of young 
individuals. Studies were conducted in all six inhabited 
continents, with more representation from Europe and 
North America. 16S rRNA amplicon sequencing data 
consisting of FASTQ files, along with associated meta-
data, were downloaded from the NCBI SRA. While 
some studies included paired-end sequencing reads, 
only forward reads were used to maintain better analyti-
cal consistency across all studies and to avoid biases in 
the efficiency of taxonomic assignment between studies. 
Following data collection, all FASTQ data were imported 
into QIIME2 version 2022.8.3 [70] for further processing 
and analysis. Data were imported through the construc-
tion of a single-end Phred33v2 FASTQ manifest for each 
dataset. Following import, quality control and filtering 
in the QIIME2 DADA2 (v1.12.1) [71] plug-in removed 
chimeric sequences, trimmed left ends of all sequences 
by 10  bp to remove primers, truncated sequences uni-
formly at 200 bp, and identified amplicon sequence vari-
ants (ASVs). In total 623,507,314 reads were filtered, with 
134,649,099 removed for poor quality or chimerism.

Data preprocessing and taxonomic classification
The Silva high-quality rRNA gene database version 138 
was used to assign taxonomy to ASVs [72]. The full-
length 16S rRNA classifier was used due to heterogeneity 
in the hypervariable region used for sequencing between 
studies. Mean classification at the genus level was 86.0% 
(Additional file  1: Table  5; Additional file  2: Fig. S2). At 
the species level, classification was unsuccessful, with a 
mean classification of 13.9%. As a result, all subsequent 
analyses were conducted at the genus level by binning 
ASV counts together based on their genus-level annota-
tions. All subsequent data analysis was managed using 
pandas (v1.4.4) in Python (v3.8.13).

Alpha‑diversity analyses
To investigate alpha-diversity, QIIME2 artifacts contain-
ing sequences for each study were merged into a single 
dataframe. Prior to calculation, algorithmic filtering 
removed any taxa with fewer than two reads per study, 
and any taxa present in less than 5% of samples across 
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a study. This merged data frame was converted into a 
QIIME2 artifact and rarefied using the qiime feature-
table rarefy function to a sampling depth of 2000. Alpha-
diversity was calculated in QIIME2 via the alpha function 
within the diversity plugin. Shannon entropy and Chao1 
index were used to estimate alpha-diversity for all sam-
ples included in the meta-analysis. Shannon entropy and 
Chao1 index for cases and controls within each disease 
were plotted and significant differences across groups 
were tested using two-tailed independent Student’s t-test 
(p < 0.05) in SciPy (v1.8.1).

Beta‑diversity analyses
To estimate beta-diversity, the filtered and rarefied genus 
count table constructed previously was used to construct 
a Bray–Curtis dissimilarity matrix using the beta func-
tion in the QIIME2 diversity plugin. Subsequently, prin-
cipal coordinate analysis (PCoA) was used to analyze and 
visualize overall beta-diversity in scikit-bio version 0.5.7. 
Significant differences in beta-diversity were observed 
along multiple axes, including case vs. control status, 
disease type, geographic location, URT sampling site, 
sequencing method, and 16S rRNA hypervariable region 
as determined by PERMANOVA, using the adonis func-
tion within the diversity plugin for QIIME2.

URT compositional patterns across geographic regions
A genus-level abundance matrix was constructed using 
only healthy control samples, and taxa with fewer than 
two reads per study or those present in fewer than 5% 
of samples across a study were removed. To examine 
the association between geographic location and cen-
tered log-ratio (CLR) transformed relative abundance 
of common taxa, multiple regression was used to deter-
mine significant enrichments of taxa in each geographic 
region while correcting for URT sampling site, sequenc-
ing method, and 16S rRNA hypervariable region using 
the formula “clr ~ region + v_region + sequencing + URT” 
in statsmodels (v0.13.5) [73]. For the purpose of these 
analyses, the continents in which studies took place were 
used as the geographic regions, as too many countries 
were represented to have appropriate statistical power 
at smaller geographic scales. As sex and age metadata 
were not available for 61.5% of the studies, these covari-
ates were not accounted for in this analysis. Multiple 
comparison correction for p-values was done using the 
Benjamini–Hochberg method for adjusting the false 
discovery rate (FDR) [74], using statsmodels  (v0.14.1). 
Per-study mean CLR-transformed relative abundance 
of taxa identified to be significantly enriched in at least 
one geographic region (multiple regression, FDR-cor-
rected p < 0.05) were added to a clustered heatmap, with 
color encoding the average CLR-transformed relative 

abundances in each context. Columns containing average 
CLR-transformed relative abundances were clustered via 
an agglomerative clustering algorithm using clustermap 
in seaborn (v0.12.2).

URT microbiome‑age associations
Associations between age and CLR-transformed relative 
abundances was analyzed via ANCOVA in statsmodels. 
Using 10 studies for which age metadata was available, 
ANCOVA was conducted using the following formula 
“clr ~ age +  age2 + variable_region + sequencing + URT_
site + region” that was used to determine significant 
associations with age, accounting for URT sampling 
site, geographic region, sequencing method, and 16S 
rRNA hypervariable region. The square term for age was 
included to determine if non-linear relationships existed 
between CLR and age. The p-values were corrected for 
multiple comparisons via the Benjamini–Hochberg 
FDR correction as previously described. Samples were 
split into quantiles by age for visualization. Significantly 
associated taxa (FDR-corrected p < 0.05) were added to 
a heatmap with color encoding the average CLR-trans-
formed relative abundances.

URT microbiome associations with sex
Associations between sex and genus-level CLR abun-
dances were determined via multiple regression. Using 
the 10 studies for which sex metadata was available, 
multiple regression were conducted using the following 
formula: “clr ~ sex + variable_region + sequencing + URT_
site + region” in statsmodels. The resulting p-values were 
corrected for multiple comparisons via the Benjamini–
Hochberg FDR correction. After correction, no taxa 
showed a significant association with sex.

Supervised classification of cases and control
Random forest classifiers were constructed for each 
study to classify cases and controls within each study 
using scikit-learn (v0.24.1) [74, 75]. Classifiers were 
constructed with fivefold cross-validation, using the 
scikit-learn StratifiedKFold function to shuffle data. The 
RandomForestClassifier function within scikit-learn was 
used to construct classifiers with n_estimators = 100. 
Area under the curve of the receiver-operating character-
istic was calculated using the results of cross-validation 
testing, using the cross_val_predict and roc_auc_score 
functions in scikit-learn.

URT microbiome‑disease associations
To investigate the association between genera in the 
URT microbiome and disease, sample read counts 
were normalized using a CLR transformation, as above. 
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Logistic regressions used case–control status as the 
dependent variable and CLR-transformed abundance 
as the independent variable, following the formula 
“case_control_status ~ clr” in statsmodels. Regressions 
were run separately within each study and sampling 
site. By running separate analyses within each study 
and sampling site, key confounders like geographic 
location, sampling site, 16S rRNA hypervariable region, 
and sequencing method were constant within a given 
regression analysis. Mean relative abundance of each 
taxon within a given study and sampling site found to 
be significant was calculated for visualizations. P-values 
were FDR-corrected as described above. Significance 
was assigned to any association with an FDR-corrected 
p-value less than 0.05. Results were plotted in a binary 
heatmap, with significant health-associated genera 
designated as blue and disease-associated genera des-
ignated as red. Heatmaps were constructed using 
seaborn.
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